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Universality of chaotic rare fluctuations in a locally coupled phase map model
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Chaotic fluctuations of the order parameter in a coupled two-dimensional phase map model are numerically
investigated. We discuss the system-s$iz@ependence of the statistical propertiesasé fluctuationsobserved
in the transition range between the quasiordered chaotic state and the fully developed one. It is found that the
normalized probability distribution functiofPDF) has a unique functional form irrespective b The
asymptotic form of the PDF is discussed in connection with the universal distribution for correlated systems
proposed by Bramwelét al. [Nature (London 396, 552 (1998]. Moreover, it is observed that the power
spectrumPy(w) of rare fluctuations asymptotically takes the power-law foPR(w)~w @79 (a=0.6
~0.7) irrespective of. This result suggests that the temporal correlation decays as a stretched exponential.
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I. INTRODUCTION affected by the boundary conditions. Therefore, it seems that
the statistical nature &f,,, depends on the system because a
Strong correlations of fluctuations over a wide range ofquantity coarse-grained at the largest scale, denoted as a
times and spaces are typical of nonlinear and nonequilibriurtiglobal measure” in this paper, is affected by the details of
phenomena. In fluid mechanics, for example, the velocitythe boundary conditions. In a recent study by Bramwell,
fluctuations observed in fully developed turbulence showHoldsworth, and PintotBHP) [4], however, it is suggested
strong and self-similar correlations from the energy injectionthat global measure fluctuations defined in both turbulence
scaleL to the dissipation scalg. Universal statistics in the and critical phenomena indicate universal statistical features.
intermediate scaléhe so-called inertial subrangkeave been Their arguments are briefly reviewed as follows.
explored by many researchédg. Similar correlated fluctua- In experimental von-Karman turbulent flow, on the one
tions are also observed in critical phenomena. Magnetic fluchand, the global measure defined by the power consumption
tuations of spin systems at the critical temperature indicat§uctuations of a turbulent flow maintained at constant Rey-
the long-range magnetic order over scales ranging from thaolds number Re) shows a unique functional form for the
lattice constant to the system size. It is well known that criti-normalized probability distribution functiofPDP), irrespec-
cal exponents characterizing the statistical nature of criticafive of Re [5,6]. In a finite two-dimensional2D) harmonic
phenomena are universal in the sense that they are indepeRy model (2DHXY), on the other hand, fluctuations of the

dent of microscopic physical deta{g]. _ global measure, i.e., the magnetic scalar order parameter, are
~ Consider the fluctuations of coarse-grained physical quannvestigated ir{7,8]. A unique form of the PDF, irrespective
tities over a scalel that satisfies the conditiom,;,<I of the number of degrees of freedaisystem sizeN, was

<Imax, Wherel ., (tmin) is @ well-defined effective largest found by Monte Carlo simulation. Furthermore, BH#|
(smallest scale in the system. In the aforementioned physi-pointed out that both PDF forms of global measures obtained
cal systems, fluctuations on a scéledicate strong correla- in turbulence and critical phenomena overlap quite well in an
tions, represented by a power-law decay with respedt to extended range. They discussed this universal nature of glo-
Fluctuation on this scale are characterized from the viewbal fluctuations from the viewpoint of strong correlations,
point of “statistical self-similarity” of fluctuations, irrespec- self-similarity, and system size effects. The global measures
tive of the details of the physical systems under considerdefined in these systems are spatially coarse-grained vari-
ation[3]. In treating a physical quantity definedlat,x, €.9.,  ables. If the spatial correlation length of the fluctuations is
the averaged energy dissipation rate in turbulence, we regagktremely small in comparison with the system size, we can
it as constant because the dispersion of fluctuatiohgatis  expect that the PDF’s of global measures should be Gaussian
much smaller than that at However, the self-similar fluc- by the central limit theorem. However, the observed PDF
tuations reach the scalg,, when the correlation length is show the following specific characteristi¢s) the PDF’s are
larger thanl 4. In this case, we cannot neglect the fluctua-strongly asymmetrical and non-Gaussian since the strong
tions atl 4 because they are connected to those at smallegpatial correlations affect the statistical properties of the glo-
scales through the strong correlations of fluctuations. In adbal measures, an?) the normalized PDF's overlap on a
dition, the cutoff of the self-similar nature at scdlg,, iS  single curve. Furthermore, this universal PDF is observed for
global measures defined in several strongly correlated physi-
cal systemg9].
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systems such as reaction diffusion systems that displagtatistical properties of spatio-temporal dynamics based on
chemical oscillations or collective motion in interacting limit this model theoretically and numerically. Such a model for
cycle oscillators are proposed as models for investigatinghis purpose, the coupled Ginzburg-Landau M&iLM),
nonlinear and nonequibilium dynamics. One of the importantvas proposed by Uchiyama and Fujisdk&]. The CGLM,
and basic models is a complex time-dependent Ginzburgwhich is composed of effective phase variables, approxi-
Landau(CTDGL) equation, which describes the spatiotem-mately describes the long-time behavior of the coupled
poral dynamics near a Hopf bifurcation po[d0]. Based on CTDGL, where the amplitude included in the CTDGL is
this model equation, statistical features of several spatioteneliminated in the long-time limit. This model is represented
poral chaotic states in chemical turbulence have been invegs
tigated both theoretically and numericalli].

In this paper, we focus on the spatiotemporal dynamics of 00 ()] — (14iC N g
a coupled phase map system that approximately describes € Hl_hg )|h§ )| ( g h§ )_; I, (D)
the long-time behavior of the spatially coupled CTDGL
equation. Especially, we investigate the statistical propertiea/hereagf) denotes the phase variable describing the state of
of order-parameter fluctuations in the phase map model ithe oscillator at the discrete grid point={x,y, ...}
the weak-coupling limit, where the dynamical variables and(=0,1,2 .. .,) andtime stept(=0,1,2 ...,). TheJ,  rep-
the order parameter are corresponding to the orientation gesents the complex coupling matrix determining the interac-
each spin and the mean scalar magnetic intensity, respeons among the oscillators. I£,.J,, is independent of,

tively. Eqg. (1) has the spatially synchronized particular solution
The main difference between the chaotic phase map anggr): 6 as

XY spin systems is the origin of the fluctuations; in the

former case, they are caused by chaos intrinsic to the system, 07, 1= 67+ E—Cln|w]|, 2)
while in the latter, they are caused by thermal noise. Thus,

the fluctuations in the chaotic phase map originate fromwherew=3,.J,,,=|w|e'¢ is independent of. We may ap-
strong nonlinearity intrinsic to the system. We discuss theply several complex coupling matrices for modeling particu-
parameter dependences of several statistical quantities der physical systems. Globally and randomly coupled cases
scribing the order-parameter fluctuations. Strongly nonwere investigated in detail ifl2]. The paramete€ is real
Gaussian PDF’s are observed in the specific spatiotemporahd is a characteristic parameter of this model. Equatipn
chaotic state. Especially, the system-size dependence of thegg C=0 is equivalent to the Noest model, which is well
PDF’s are investigated in detail in connection with the uni-known as a model for neural networKi3]. A study applying
versal PDF for turbulence and critical phenomena proposethis model withC+0 to a neural network was carried out in
by BHP[4,9]. Moreover, we refer to the statistical properties Ref. [14].

of rare dynamical fluctuations by investigating the power |n this paper, we propose a local coupling among the os-
spectrum when the PDF shows the universal form proposegillators, so that such oscillator interacts with its nearest

by BHP. neighbors. The coupling matrix is given by
This paper is organized as follows. Section Il introduces
the phase map model. In Sec. Ill, the global features of the 1 ([r=r’|=0)

spatiotemporal dynamics are investigated for several values 3.,=1{ kelb (Ir=r'|=1) 3)
of the system parameters. In Sec. IV, we discuss the univer- m’

sal nature of the PDF for the order-parameter fluctuations in 0 (otherwisg,

the specific spatiotemporal chaotic state. In Sec. V, the PDF o

obtained in the phase map model is compared with the andvhereé« and 8 are real. This is the fundamental model for
lytic form proposed by BHF9] and a stochastic phase map investigating the Iong-_tlme dynamlcs of the collective mo-
model phenomenologically constructed on the basis of th&on of locally interacting oscillators. Here, we use a two-
chaotic phase map. In Sec. VI, the temporal correlations ofimensional  (2D) ~ square lattice, r=(x,y)({x,y}

rare fluctuations are studied by observing the asymptotic=1.2, ... n) with periodic boundary conditions. This 2D
form of the power spectrum and its system-size dependenc@_.hase model h:_:ls a spa.t|all)_/ synchro.m;ed parucular_ solution
In Sec. VII, we summarize the results obtained in this paperSince the coupling matrif3) in 2D satisfies the equation

Il. TWO-DIMENSIONAL COUPLED PHASE MAP w= E Jn=1+4ke’, )
SYSTEMS '
independent of. The temporal evolution of the particular
éolution is obtained by substituting E@) into Eq. (2).

We define the order-parametlr, to characterize the glo-

al state of the phase map system by

It is difficult to investigate the long-time behavior of spa-
tially extended or coupled CTDGL equations because of th
large number of degrees of freedom. Numerical integration i
also restricted by the current limits of computational power.
A possible approach in this situation is to construct a dy-
namical model to investigate the long-time behavior of Z,
coupled CTDGL equations. We can discuss dynamical or

1 N

:N{x yi=1 eiat(xyy):xt"‘wt, (5
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M=|Z|= X+ Y7, (6) ' ' ' '

where the summation is taken over &ll=nXn spatial |
points. The order-parametit, represents the degree of syn- os | \
chronization of the oscillators. It is unity if all oscillators are '
spatially synchronized, while it is close to zero when they
fluctuate randomly. This quantity corresponds to the instan- 06 |
taneous scalar magnetic intensity in an XY spin system. In a )
chaotic state, the global measuvk fluctuates within 0,1].
The macroscopic behavior of the phase dynamics is charac- 04 |
terized by the fluctuations d¥l, and their statistical proper-
ties, andM, is the global measure of the phase map system.

The locally coupled CGLM contains three control param- 02
eters,C, «, andp. Various dynamic aspects are observed by
choosing appropriate parameter val{i&5]. The most impor-

! X X 0 L A S e = . _|
tant parameter i<C, which controls the complexity of the 0.2 0.4 0.6 0.8 1 1.2
dynamics. In thex-B parameter region where the unstable D
uniform oscillation and the inverse-phase state coexist, the ) ] ] ]
system attains several spatiotemporal chaotic states ias FIG. 1. Bifurcation diagram of the order-parametdt in the

gradually increased from zero. Spatial structure is observeCSCM. shown veD. The system size is fixed &t= 32,

for C~1. A developed spatiotemporal chaotic state is estab- ) )

lished in the largeC(>1) region, where the system behavior _,4D[5'”2(q>_</2)fS',”Z(qvlz)]<1- Therefore, the synchro-
is fully complex both spatially and temporally. Observing the Nized solution is linearly stable for

dynamic features oM,, we may, on the whole, divide the 1

states of motion into three groupé) coherent statesq 0<D<-=-. (10)
<1), (ii) weakly spatio-temporal chaotic state81), and 4

(iii ) turbulent states@>1). The system falls onto a particu- i _

lar solution in the coherent state, where fluctuationdviip The synchronized solution becomes unstable Bor 1/4,
are not observedM, equals unity because all the oscillators Where the nonlinearity plays an important role for the dy-
are perfectly synchronized. Fluctuationshf are observed namics. Numerical simulation shows that a chaotic motion
in the second region, where the system shows weak chaotfPP€ars in this region. The parameters included in®care
behavior with a spatially coherent structure. In the turbulenf® coupling-constard and the number of oscillatorsys-

state, strongly developed spatiotemporal chaos is observe{@™ Sizé N. Depending oD, several states are observed. In
and M, fluctuates near zero. the largeD (>1) region, especially, we expect that fully de-

When we consider the weak coupling limit of the Coup|edveloped spatial and temporal chaotic states are observed be-

CGLM, i.e., k<1, the equation may be approximated as ~CaUS€ the inequalith>1 means tha€>1 holds in CGLM.
Another important aspect is that E) has a conserved

_ ., quantity under periodic boundary conditions. In fact, one
0= 07V + Dg} sin(0> Y= o>V +$), (7))  may easily prove that the quantity

N
D=«\1+C? ¢=B—tan 1C, (8) gc:{x%l o) (11)
to O(k), whereZX, , indicates summation over the nearest ]
neighbors of the sitex(y). Note that the control parameters IS @ constant of the motion. Thus, the system €j.hasN
in the coupled CGLM are effectively reduced to two param-—1 degrees of freedom.

eters O, ¢) in Eq. (7). The spatially synchronized solution A coupled phase map model such as E9). has been
for this model satisfie, ; = 65+ 4D sin(#). This particular investigated for the globally coupled cd4é]. To the best of

solution is also obtained from Eqe2) and (4) in the k—0 O knowledge, there have been no previous studies of the
limit. Equation(7) with ¢=0 locally coupled case. We numerically investigate the collec-

tive chaotic motion and statistical properties of e fluc-
o tuations in Eq.(9). Hereafter, this model will be called the
60 = 0N+ DD sin( g Y — V) (99 locally coupled sine-circle ma. CSCM).

n.n.

dIII. GLOBAL FEATURES OF THE LOCALLY COUPLED

has the specific characteristic that the spatially synchronize
SINE-CIRCLE MAP

solution is temporally constars= 6.
Next, we consider the linear stability of the synchronized |n order to obtain the global dynamical features of the

oscillation of Eq.(9) by putting 67Y)= ) — g,. The sta- LCSCM, we investigate how the fluctuations i, depend

bility condition for 8¥)= 2!(%**9¥ is given by—1<1  on the parameteD for fixed N. Figure 1 shows the bifurca-
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tion diagram ofM, with N=322, based on 128 data points
for each value ofD. For each data point, the system was
started atgY)=0.017r*Y), r*¥) being independent uni-
form random numbers about each sites with wigthl,1],

and 65536 time steps were discarded to allow transients to
decay. From the results shown in Fig. 1, the dynamiciklpf

is roughly characterized as follows. In thez® < 1/4 region,

M, equals unity because the spatially synchronized state is
stable in this parameter region. The spatially uniform state
becomes unstable f@>1/4. Until D=0.4, M, falls on the
fixed-point solutions below unity. The dynamics kF, for
0.4<D<0.55 indicates periodic motion. In this region, how-
ever, the relaxation time for the steady state is quite long, and
in addition, these periodic solutions sensitively depend on 0 .
the initial conditions. The state of motion drastically changes 55 0.6 0.65 0.7 0.75 0[‘,8 08509095 1 1.0
aroundD=0.55, andM, shows chaotic fluctuations fdp
>0.55. AsD increases further, we notice that the state of
motion changes aroun®=0.7 from M;=0.65 to M,=0.

This result implies that a® is increased, a transition be-
tween a spatially coherent quasiordered chaotic state and a
fully developed spatiotemporal chaotic one occurs.

Next, in order to characterize the chaotic behaviors of
M;, we investigate how statistical quantities change as the
parameters are changed. The average valye(M,) and
the standard deviatiooy=((M;—(M,))?)*? are analyzed
for several values ob andN. Here,(- - -) means the long-
time average. Figure 2 shows tBeandN dependences ¢8)
ay and (b) \NUN, whereD is varied between 0.551.05
with increments of X 102 for N=167, 32, 4&, and 64.

The average for each run was taken over 327 680 time steps 0 A
after eliminating the transient 20 000 steps. In the €.B5 0.55 0.6 0.65 0.7 0.75 0.8 0.850.9 0.95 1 1.05

<0.65 range,any=0.65, but it decreases rapidly around b

0.65<D<0.7. This result clearly indicates that there is a FIG. 2. TheD dependences dB) the averagey and (b) the
transition between a spatially coherent quasiordered chaotitandard deviatiowry of M, in the LCSCM. Each line represents a
state and a fully developed chaotic one in the range 0.68ifferent system sizeN=16?, 32, 48, and 64.

<D<0.7. This nature is also qualitatively independent of

the system siz&\. Indications of a transition is also observed p in the transition range represented in Fig&)2nd 2b).
for VNoy in the 0.65<D<0.7 region, where the fluctuation In this range, however, one should notice that a crossing
arounday rapidly increases. On the other hand, the Otherpoint of the each lines in Fig. (8 is observed neaD
region is not almost independent of system shkteThis  =0.68, and it is close to the minimum positions of Figh)3
means that the standard deviation decreases,asN % so  which seems to be independent lf These facts may be
that, as discussed in the next section, the spatial correlatigsossible to determine a transition point for the infinite system
lengths of fluctuations are extremely small in these paramsize in detail. The studies for this purpose will be reported in
eter values. The position of the sharp peak in the transitiohe future paper.
region of \No appears to converge to arindependent Another characteristic behavior is observed in the ldge
value neaD=0.68 asN increases. The large fluctuations in region (D>0.7), whereCV, andS are asymptotically con-
M. in this parameter range suggests a specific transitiogtant irrespective oD and N. This result is explained as
among spatiotemporal chaotic states. The incipient diverfollows. WhenD is sufficiently largeM;, fluctuates near zero
gence ofyNoy reminds us of the interrelation between the because the motion of the oscillators attains a fully devel-
present chaotic phase system and the 2DHXY system wheoped chaotic state, and they thus evolve almost randomly.
we regard the parameté and oy as analogous to the tem- This implies thatX; and Y, are regarded as averages of
perature and susceptibility, respectively. N-independent random variables. The probability distribution
Moreover, we investigate the behavior of normalized mo-functions(PDF) of X; andY, are evaluated as normal distri-
ments. The coefficient of variatio@Vy=oy/ay and the butions (Gaussiansfor N>1 (the central limit theorem
skewness coefficienSy=((M,—(M))%)/o3, for several Moreover, we can expect tha{X)=0, (Y)=0, and
values ofN are shown in Figs. @) and 3b), respectively. (X;Yy)=(X;)(Y;)=0 are approximately satisfied f@>1.
The numerical conditions for Fig. 3 are the same as for FigThis is verified if 6¥) are represented by independent uni-
2. We can recognize th&Vy andSy sensitively depend on form random numbers with large dispersion. Consequently, it

ay

(=]

\/NO'N
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06— @ an asymmetric non-Gaussian form becaBgeis negative.
One should notice that this result is independent of the sys-
0.5 1 tem sizeN.
The results obtained in this section are summarized as
04| follows. The spatiotemporal chaotic states are divided into
the following three states for eadhregions:
£ oaf (1) 0.55<D<0.65: spatially coherent, quasiordered cha-
otic state,
02} . (2) D>0.7: fully developed spatiotemporal chaotic state,
B (3) 0.65<D<0.7: intermediate or transition state be-
o1 A tween the states 1 and 2.

In the next section, details of the fluctuation properties of
M, in the transition region 3 will be investigated.

0 e I I I I I I I
0.550.6 0.650.70.750.80.850.90.95 1 1.05
D

L A IV. STATISTICAL PROPERTIES OF CHAOTIC RARE
® FLUCTUATIONS

In the previous section, we investigated theand N de-
pendences of statistical quantities such as the avesagad
the standard deviatiomy whenM; fluctuates. In particular, a
transition between the quasiordered and the fully developed
spatiotemporal chaotic states is observed. In this section, we
investigate the spatiotemporal chaotic state observed in this
transition range in detail. Numerical simulation of the
LCSCM for severalD values in this range shows that the
universal features of fluctuations being similar to that of BHP
P P [4,9], which will be discussed in the next section, are ob-
0.550.60.650.70.75 0.8 0.850.00.95 1 1.05 served aroundd =0.67. Therefore, a characteristic value of
D in this range is chosen &= 0.67, which is close to thB
FIG. 3. TheD dependences of the normalized mometdasthe  value giving the largest standard deviation and the smallest

Sy

coefficient of variationCVy, and(b) the skewness coefficiels . skewness coefficient. We analyze the statistical properties of
CVRy and Sy are evaluated by the Rayleigh distribution. For details, fluctuation ofM, for several system sizes wilh=0.67.
see the text. First, Fig. 4 showga) the time series oM, and (b) the

orbit in the X,-Y, plane forN=322. Here, the initial condi-
is expected thak; and Y, obey identical and independent tion was chosen as independent random-phase values at each
normal distributions, so that the PDF ofM; site, which leads tdM;=0. We observe thaM, fluctuates
= \/Xt2+ Ytz, Pn(M)=(5(M—M,)), is the Rayleigh distri- chaotically in the range 0-50.6. We also observe character-
bution istic rare bursts during whicM, decreases significantly be-
low this range. In this paper, we call these large durations
™™ mM? rare fluctuations This result clearly shows that the spatially
PN(M):EE’X’{ N 422 | (12 disordered state comes in the coherent chaotic state. Such
rare fluctuations are also observed for other valueb afi

The corresponding normalized momen®Yx and S; are  the transition range, irrespective f This is one of the most

obtained as characteristic aspects of the dynamics in this region. In the
Xi-Y; plane, we see that the orbit moves symmetrically
4— g\ 12 around the origin. This result means that the averaged phase
CVg=|——| =0.52, 13 — )
T 0,, defined as
2(m—3)7? B 7
RZW:O.G& (14 Zi=Me™, (19

Figure 3 clearly shows thalVy and Sy asymptotically ap- evolves in time. This behavior is similar to the fact that the
proach toCVg and Sg, irrespective ofN. In the 0.55D total magnetizatiorM, in the 2DHXY critical spin system
<0.65 region, on the other han&, is near zero, which fluctuates with changing the averaged orientation ragidly
means that the PDF takes an almost symmetric form. Drastic In order to investigate the statistical properties of the rare
changes occur for 0.65D<0.7, where the transition be- fluctuations in detail, we analyze several statistical quantities
tween the coherent or quasiordered and fully developed chaf M,. We took Z3 data points to calculate the statistical
otic states occurs. The PDF obtained in this range representmiantities for system sizebl=16?, 32, 48, 64, and
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FIG. 4. (a) A short segment of the time series idf;, and (b) the
corresponding orbit ifX;-Y; plane for the LCSCM withD=0.67
andN=32.

807, and 2* data points folN=96 and 128. Hereafter, the

average operatiof: - - ) denotes the long-time average over

all data points.
Figure 5 shows the PDF ¥, Py(M)=(5(M—M))),

30 T T T T T
16
32;
25 64 - 8
128
20 -
S
A5 | A
<
10 b
5 - -
O 1 = 30N N
0.2 0.3 0.4 0.5 0.6 0.7 0.8

M

FIG. 5. The probability distribution functioRy(M) calculated
from the M; fluctuations withD=0.67 for several system sizes
(N=16%, 32, 64, and 128).
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0.1 . .

ONn
+

0.01 1 1 s
10? 10° 10* 10°
N

FIG. 6. The dependence on the system $izef the standard
deviationoy for D=0.67. The dotted line denoteg,~N~2

calculated for several system sizes. The PDF has a sharp
single peak. AsN is increased, both the position and the
width of the peak decrease. Therefoeg, is a decreasing
function with respect td\, as seen in Fig. (3). Figure 6
shows theN dependence of the standard deviatigpof the
PDF obtained in Fig. 5. It is clearly found thaf, decreases
asN is increased. For a largd, however, it seems that the
rate of decay gradually decreases in comparison with that for
a smallN. It seems that the decaying is not governed by a
simple power law. Thé&\ dependence af is interpreted as
follows. By using Eq.(15) we can rewriteM; as

1 XN _
Mi== > #(r), w(r)=cod6"—6). (16
N (=1

The standard deviation is estimated ¥ 1 by making use
of the correlation function ofj(r), C4(r)={(r)¢+(0))
_<'//t(r)>21 as

2 N
2 4
R=y {F}Z:o cl(n). (17)
If the correlation length of the fluctuations ¢f(r) is much
shorter than the system size-(/N), and theN dependence

of Cﬁ’(O) is negligible in comparison to any power-law func-
tion of N, we obtainoy~N~Y2 for sufficiently large N.
However, Fig. 6 clearly indicates that it decays much slower
than N~ Y2 This result suggests the existence of spatially
strong correlations of;(r), which are closely connected to
the existence of a spatial coherent structure.

In order to observe the asymptotic behavior of the PDF,
we plot it in a normalized form by usinyl — (M —ay)/ oy
andPy(M)—onPy . The result is shown in Fig. 7. Near the
maximum, the PDF takes a parabolic form, but it depends
almost linearly orM to the left of the maximum. In short, the
PDF shows a strongly asymmetric form, very different from
a Gaussian. This asymptotic form is related to the fact that
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o T T

- . . - Moreover, we refer to thbl dependence of the normalized
PDF in the extreme left of Fig. 7. We consider that this

- dependence is not the statistical error because the right ex-
treme is perfectly in agreement with the scaling law. We
doubt that the statistical property of the extremely rare fluc-
tuations are sensitively depending on the paranietbelow

o O B O % X + o

§ a transition poinD; and the system sizi. If we take just a
<8 i transition parameter, the unique behaviors of a whole range
°g . of fluctuations will be observed. This is one of the possibili-
-4 ¥ ties of the observetll dependence, and an unsolved problem
- in the present paper.
5 - The statistical nature of the rare fluctuations obtained in
% this section suggests that a unique, non-Gaussian PDF exists,
5 5 irrespective ofN in a broad range of fluctuations. This prop-
erty is quite similar to that of the universal PDF suggested
for turbulence and critical phenomena by BRER. The rela-
7 10 -8 4 2 0 > a4 tion between our results and that of BHP is discussed in the
(M-ay)/ oy next section.
FIG. 7. The normalized probability distribution function bf; V. UNIVERSAL DISTRIBUTION EUNCTION
for the LCSCM, shown for several system sizes. The solid curve FOR RARE FLUCTUATIONS
line represents the BHP fluctuation spectrum &4). The base of
the log is 10. In the previous section, we showed that the fluctuations of

M, are characterized by rare, large bursts that are called rare
the skewness coefficiel8y shown in Fig. 8b) takes nega- fluctuations. Furthermore, it was shown that the normalized
tive values. In the range that the deviation from the averag€DF obtained from the rare fluctuations is a non-Gaussian,
value ay is within 4o, the normalized PDF clearly has a unique function that is independent of the system Blze a

unique form independent of system sMeThis means thata broad range. It is quite tempting to attempt to obtain the
scaling law, analytical form of the PDF. The fluctuations W, are deter-

ministically produced by the fundamental dynamical
LCSCM system. The numerical results discussed in Sec. IV
(18)  suggest that the PDF obtained for the LCSCM is expected to
be similar to the universal PDF proposed by BHP. How-
is obeyed in a broad range of fluctuation. Heféx) is a Ve, it is rather difficult to theoretically detgrmine the form
scaling function that is independent dFf and satisfies the Of the PDF for the LCSCM. Instead, we will therefore use

1 M—-a
_f( N

ON

Pn(M) = -

normalization conditions analytical results for the 2DHXY model, for which some
statistical quantities related to the magnetic scalar fluctua-
oc % o tions can be exactly derivdd@—9,17. In particular, a unique
f f(x)dx:J' x*f(x)dx=1, J xf(x)dx=0. form for the PDF form for the magnetic fluctuations in the

low-temperature region is investigated in detail. The origin
of the non-Gaussian nature of the PDF and its independence
of N are discussed if8] by evaluating the functional form of
the PDF from relations among moments. Moreover, the
asymptotic form of the universal PDF, which we call the
“BHP fluctuation spectrum,”

19

It is important to notice that the scaling law EG8) leads to
relations among moments. If Eql8) is satisfied for all
ranges of fluctuations, thpth order moments around the
averageay should be represented in terms®§ as

(M= aylP)=kyof, (20 fx)=K exr{%{b(x—s)—e““)} 2D

with prefactork, . Thus, all moments may be determined by is suggested ifi9], where it is shown that E¢21) is in good

oy, except for the prefactds, . If oy~N"7in a scale range agreement with numerical results. The parameters ir(Z.

of N, we obtain the relation(|M;—ay|’)~N""". The (K=2.14, b=0.938, ands=0.374) are constants evaluated
present scaling behaviors are described by just one exponey Eq.(19). In addition, the details of the fitting of E¢R1)

y. The numerical result obtained in our model, however,and other functional forms for the universal PDF by BHP are
does not show the simpl dependence ofry such asoy  discussed i17]. Furthermore, it is shown if9] that PDF’s
~N~7. The reason that we did not observe the power-lanof global measure fluctuations defined in several correlated
decay of oy may be originated from the choosing of the systems, such as self-organized criticality or percolation sys-
parameteD =0.67, which seems to be slightly smaller thantems, are in good agreement with the BHP functiah).

just a transition poinD.. If we chooseD=D_, the spatial The chaotic model treated in this paper seems to be in a
correlation of fluctuations is strongest in this point, and maycritical state forD=0.67 because it is near the transition
observe the power-law decay. point between the quasiordered and fully developed chaotic
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states. Moreover, strong spatial correlations appear in this
range, evidenced by the fact that the standard deviatipn
decreases more slowly that 2 as shown in Fig. 6. We
therefore conclude that the present LCSCM model possesses
strong spatial correlations. Thus, we suspect that our PDF
may belong to the same universality class as the BHP fluc-
tuation spectrum. In order to test this possibility, our results
are compared with the BHP form in Fig. 7. The result repre-
sents that the PDF of the LCSCM seems to be in good agree-
ment with the BHP form over the wide range of fluctuations,
but slightly deviates from it in the tail regions.

Here, we consider the origin of the deviations in the tail
regions of PDF. In general, it is uncertain to apply BHP form
evaluated in theoretical studies of the 2DHXY model to other
systems. The LCSCM has the same spatial dimension and
the same symmetry as the 2DHXY model. Nevertheless, it is T 40 8 6 -4 2 0 2 a4
quite natural that rare fluctuation induced by thermal noise in (M-an)/on
the 2DHXY model may be different from those induced by _ o _
chaotic coherent noise produced by the strong nonlinearity of /G 8- The normalized probability distribution function bf;
the LCSCM. Moreover, it is reported 18] that the 2DXY in the RPDM for several system sizes. The solid curve represents

model for temperatures close to the Kosterlitz-Thouless trant—he BHP fluctuation spectrum E(R1). The base of the log is 10.

sition shows a significant deviation from the BHP form, SOunity if the external noise term is neglected in E2Q). This
that the harmonidspin-wave approximation is needed to s the reason for the necessity of the external forcing. Here-
obtain the BHP fluctuation spectrum in the 2DXY model. after, Eq.(22) will be called the random phase diffusion map
This fact provides a hint as to the origin of the disagreementrppy).
of our results with the BHP form. In order to discuss this  \ye have solved the RPDM numerically and observed the
problem, we propose a model that amounts to a “harmonijyctuations of the order-parametbt,. The parameters in
approximation” to the LCSCM, and we compare its order-he RPDM areD, f, andN. The parametef measures the
parameter fluctuations to those of the LCSCM. intensity of the agitation. We study the properties\of in
_ I the phase differences among nearest neighbors are Silie smalif regime. By performing the numerical simulation
ficiently small, i.e., a closely synchronized state, we can apyf the RPDM for several parameter values, we find that there
proximate the interaction term as siff{ ¥ —0%)=9*¥)  exists a unique PDF independent Dfand N as long asf
— 6% | Moreover, we expect that the fluctuations induced<1 is satisfied. The results fob=0.1 and f=0.15 are
by chaos plays a role to disturb the phases. This is taken intshown in Fig. 8 foN=16%, 32, 48, 642, and 96, where
account in the linearized model by introducing a stochastithe PDF’s are normalized as those in Fig. 7. The character-
noise. Consequently, the phenomenological stochastic phassics of the PDF in Fig. 8 ar@) the PDF takes an asymmet-
map model we propose takes the form, ric non-Gaussian form that is similar to that obtained for the
LCSCM, (ii) the normalized PDF seems to be independent of
L the system siz&\ in the whole range of fluctuation, artii )
oY =g0N+D D, (9 Y)—gEM+ TV (22)  the normalized PDF is in good agreement with the BHP fluc-
L tuation spectrum.
One should notice that the RPDM is equivalent to the
The parametef controls the intensity of the external noise Langevin equation for the 2DHXY model if we take the
term, wherel"*¥) is a uniform random variable dn-1,1],  continuous time limit. Therefore, the PDF bf, obtained by
statistically independent at each site and time step. Here wige RPDM in this paper is same as that obtained by BHP in
note a difference in the physical significancedfbetween [4,9]. This is the reason that the PDF for the RPDM is in
the LCSCM and Eq(22). The parameteD in the LCSCM  good agreement with the BHP form. On the other hand, it is
controls the state of chaotic motion f@r>1/4, where the interesting to note that the functional form obtained in the
nonlinearity plays an important role for the dynamics. On thel. CSCM is quite similar to that in the BHP for21). This is
other hand, the linearized LCSCM is meaningful only for O because the rare fluctuations in the LCSCM are caused by
<D<1/4 because its solutions f@>1/4 are unstable, as deterministic chaos. Why are both PDFs so similar?
seen from the stability condition of Eq22) with f=0. We anticipate that the main mechanism producing the rare
Therefore,D should be limited to 8D<1/4 in Eq.(22). In  fluctuations is the competition between processes that syn-
this case,D is regarded as a phase diffusion coefficient,chronize and disturb the individual phases. In the RPDM,
which controls the degree of synchronization among phaseghese mechanisms are the “diffusion term” and the “noise
because the continuous limit of E¢22) without external term,” respectively. On the other hand, these mechanisms do
noise is equivalent to the phase diffusion equation. The difnot exist independently in the LCSCM. For the intermediate
fusion term promotes relaxation towards a state of fully syncoupling range in the LCSCM, however, we expect that the
chronized phases. Therefore, the valueMf approaches coherent chaotic dynamics plays a role in producing both

log(onPN(M))
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mechanisms because the dynamics is represented by the co- l =
existence of the quasiordered, coherent state and the fully
developed spatiotemporal chaotic one. It is possible that the
fully developed chaotic dynamics play the role of “noise
term” in the RPDM. Conversely, the quasiordered dynamics
seem to promote the synchronization among phases. As a 1072
result, the intermediate chaotic state contains two mecha-
nisms implicitly. One should, however, notice that the quasi-
ordered state is also weakly chaotic, so that the dynamics are
also affected by the nonlinearity. Thus, the role of the inter-
mediate state is different from that of a simple “diffusion
term,” which is linear in6®Y) . Under this consideration, we
conclude that the qualitative features of the rare fluctuations
in the LCSCM are different from those of the RPDM, since 107
the deviation from the BHP form for the LCSCM originates
from the spatially quasiordered chaotic state of the system.

107!

1073

In(w)

10° 10 100 102 1070 1 10
VI. POWER SPECTRUM FOR RARE FLUCTUATION w
DYNAMICS

FIG. 9. The power spectrg(w), calculated from the time se-
As shown in the previous sections, the form of the pDEries of M in the LCSCM for several system sizes. The reference

for the LCSCM is quite close to the universal PDF proposedin€ has a slope of-1.7,

by BHP. However, the universal nature of fluctuations pro- ) _ _ )

posed by BHF4,9] is based on the resemblance between thé&xponentially decaying autocorrelation function, though the

PDF's of global measures in different systems, i.e., stati¢caling exponent clearly deviates from the case of a Lorent-

properties. The dynamical statistics of rare fluctuations havéian tail (@=1). For 0<a<1, however, the autocorrelation

not been discussed in those studies. It is an important produnction may be a stretched exponentially decaying function

lem to elucidate the statistical properties of temporal correl19,20 as

lations of rare fluctuations in correlated physical systems that

share the BHP fluctuation spectrum. In this section, we in- _ _ L “
vestigate the\ dependence of temporal correlations. CN(I)_CN(O)eXF{ ‘TN ) (24)
It is useful to investigate the spectral density of order-
parameter fluctuationAM=M;—(M), defined by where 7y represents the characteristic correlation time of
T-1 2 M, which depends on the system sideln order to check
_ ot the form of Eq.(24), we evaluateCy(t) from the numerical
(@) < tzzo AMqe > 23 results ofl () in Fig. 9 by the Wiener-Khinchin theorem.

The plot is shown in Fig. 10 fo€y(t)/Cy(0) vst® with «
for several system sizes. Her¢=0,1,2...,T—1 and
wg-,=27k/IT(k=0,1,2...,T—1). The I(w,) are nor-
malized so as to satisi@y(0)=o03==,_21y(wy)/T, where 1
Cn(t) is the autocorrelation function ofl,, i.e., Cy(t)
=(AM;AMy). Figure 9 shows the numerical results for the
power spectrum oM, in the LCSCM for T=32768 (\
=167, 32, 4%, 64, and 8B) and T=65536 (N=96
and 128). One clearly observes thag(w) is almost con-
stant in the low-frequency region, but asymptotically takes a
power-law =~ 1*® with a positive @ in the moderately
high-frequency region. This power law is characterized by an
excess exponend&, which is numerically estimated as
=0.6~0.7. Moreover, observe thatfor largeN is indepen-
dent ofN. For the reference, we plat~ "% with =0.7 in
Fig. 9. On the other hand, one may notice that a small bump
exists in the right extreme tail f,(w). The peak position of 0.1
bump for eachN is about half of the Nyquist frequency and S
independent oN. This result may denote the short-time co- 0 50 1;39 150 200
herent dynamics of the system originated from the character-
istics of chaotic behavior of the individual oscillator. The  FIG. 10. The autocorrelation function of the LCSCM evaluated
asymptotic power spectra for larde are so similar to the by Iy(w) in Fig. 9 for several system sizes. One should notice that
Lorentzian that is obtained by Fourier transformation of anthe horizontal axis is made k.

Cn(HICN0)
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=0.7 for N=48, 64, 80", 96, and 128 via a semi-log
plot. The results clearly indicate th&y(t) is well repre-
sented by the stretched exponential form except the small

region. This deviation from Eq24) in smallt region is due 107!
to the bump ofly(w) in the high-frequency region. ABl
increasedCy(t) decreases more slowly in time. This result 107

implies that the characteristic timeg is the increasing func-
tion of N. Thus, the autocorrelation function is asymptoti-
cally given by the stretched exponential function. On the
other hand, this result is also verified as follows. If the
asymptotic form(24) is held in the whole range of time 107
steps, the power spectrum evaluated by using Wiener-

Khinchin theorem has the scaling form

1073

In(@)/IN(0)

1075
w
|N<w>=|N<0>g(w—, (25 106 L
N 102 107 1 10 107 10°

with the characteristic frequeneyy= 2w/ 7y, whereg(x) is wen

a scaling function independent bf If T is sufficiently larger FIG. 11. Scaling plot of y(w) from Fig. 9. The reference line
than the discrete time interval, we can take the continuoushows the asymptotic form of the scaling functigtw/wy) [Eq.
time limit, and the summation is replaced by an integral. In(28)] with w/wy>1 evaluated by assuming the stretched-
this caseg(x) is represented by exponential form of the autocorrelation functionCy(t)
=Cy(0)exp|t/ny®7). Here, wy=1.82, 1.39, 1.15, 0.83, and

© 0.47 (xX107?) for N=48&, 64, 8", 9¢, and 128.
e % cog2mzx)dz
0

g(x)= (26) The asymptotic forn{28) with «=0.7 are drawn in Fig. 11.
fmefzadz The result is in agreement with the numerical ones dor
0 =wy, but seems to slightly deviate from the numerical re-

sult. This is originated from the overestimation @f;, be-

In order to investigate the above-mentioned features of theause the bump structure b§(w) in the highest-frequency
temporal correlations, we check the validity of the scalingregion(or oscillatory structure o€y (t) in t*<1) affects the
law (25). For this purpose, we must estimate the charactereorrect values ofvy, when we evaluate them by supposing
istic frequency(time) wy(7y) In @ concrete manner. Suppos- the pure stretched exponential form ©f(t).

ing that the autocorrelation function is represented by Eq. We have also calculated power spectra for the RPDM.
(24) in a broad time range, we may estimate the explicit formThe asymptotic form of the power spectra is found to be
of 7y by substituting Cy(t)=Cy(0)exp(|t/my|*) into  similar to the case of the LCSCM, viky(w)~ Const. in the

In(@)=2[5Cn(t)cosEt)dt as low-frequency region andly(w)~w~ ¢ (a=0.8) in the
high-frequency one. The scaling exponenfor the RPDM

aln(0) seems to be slightly larger than that for the LCSCM. We
NT2C (0 (L) (27 evaluate the autocorrelation functi@(t) in RPDM by us-

ing the results of y(w), as done in LCSCM. The results are
where I'(z) is the Gamma function. Consequently, is  Shown in Fig. 12 via a semi-log plot @y(t)/Cy(0) vst®®.
evaluated by using numerical results fg(0), Cy(0), and  This result clearly shows that the autocorrelation functions
the scaling exponentr, a being estimated from the for eachN are well expressed by the stretched exponentially

a_symptotic form of the power spectrum. decaying fUnCtiOf‘(24) with «=0.8 in the whole range of
Figure 11 shows the scaling plot for several system size§me. _ . _
with wy= 27/ 7 evaluated by Eq(27), wherea is taken as Moreover, we investigate the scaling law of the power

a=0.7. The scaling law works very well in the whole fre- SPectra as done in the case of LCSCM, but putting0.8.
quency range except the highest-frequency tail. This resufts shown in Fig. 13, the scaling law works very well in the
also supports that the autocorrelation function is asymptotiwhole frequency region, i.ely(w)/1n(0)=g(w/wy). The
cally represented by a stretched exponential function. Moreasymptotic form ofg(x) with x>1 is also drown in Fig. 13

over, we can obtain the asymptotic form of the scaling funcWith a=0.8, which is in good agreement with the numerical
tion g(x) (26) with x>1 as[20], results. Therefore, we conclude that the autocorrelation func-

tion of M; in the RPDM is quite well expressed by a
ol (a+1)sin(mal2) stretched exponential function, as in the LCSCM case. This
= is an interesting result because the dynamical properties of
(L) (2m)t*« the nonequilibrium chaotic system such as the LCSCM is

quite similar to that of the equilibrium RPDM model. The

(x>1). (28)  similarity of static and dynamic properties between the

g0 ~A(a)x” 9, A(a)
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FIG. 14. TheN dependence of the characteristic timgin the
FIG. 12. The autocorrelation function of the RPDM evaluatedRpDM evaluated by Eq(27). The dotted line represents,~N,
by In(w) for several system sizes. One should notice that the horiwnhich is estimated by the dimensional arguments. For details, see
zontal axis is made bt the text.

LCSCM and the RPDM suggests the possibility that thereBy dimensional analysis of the diffusion equation, we can
exists a universal dynamical equation for describing theestimate theN dependences aby as follows. The scaling
order-parameter fluctuation. If so, such an equation will berelation between the characteristic length sdaland the
of course, established in the coarse-grained levels of fluctuaime scaleT is represented by the diffusion equation as
tion, where the origins of fluctuation is clearly different eachT~*~D L2, In the 2D system, the system si2¢ is
other in the microscopic level. It is an important and inter-evaluated byN~L?2, which leads to the evaluatiomw,
esting problem to construct the governing equation of motion~T~1~D ,;sN~!, if wy is regarded as the inverse of the
for M, fluctuation. characteristic time. Figure 14 shows thedependence of

Finally, we comment on th&l dependence of the charac- characteristic timery evaluated by Eq(27) in RPDM. We
teristic frequencywy . We have referred to the fact that the can recognize that the prediction by dimensional analysis of
continuous limit of the RPDM leads to the diffusion equationphase diffusion equation works very well, i.ey~N.
without an external noise ternﬂ(x,y,t)= DaitfV2O(X,Y,1).

VIl. SUMMARY

T In this paper, we have investigated the statistical proper-
ties of rare fluctuations of the order-parameldy in the
LCSCM. Universal statistical properties with respect to
variation of the system sizh were explored by numerical

107!

A(e)(/e)

a=0.8

1072

1073

IN(@)/IN0)

107

107

107

1074 1073 1072 107! 1

FIG. 13. Scaling plot ofl\(w), calculated fromM; in the
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simulations. As a result, we have found that the steady-state
distribution function in a characteristic spatiotemporal cha-
otic state is a non-Gaussian function, and that the functional
form of the normalized distribution function is independent
of the system siz&l. The form of the PDF obtained for the
LCSCM was discussed in connection with the BHP fluctua-
tion spectrum and, on the whole, was in good agreement
with it. The results obtained in this paper may suggest that
there exist universal statistical features common to turbu-
lence, critical phenomena, and dissipative systems.
Furthermore, we have investigated the dynamical proper-
ties of rare fluctuations, which have not previously been dis-
cussed for universal rare fluctuations. It was found that the
power spectrum of the order-parameter fluctuations has the
power-law forme ™~ * %) with «=0.6~0.7 for the LCSCM

RPDM. The reference line shows the asymptotic form of the scalinggnda = 0.7~0.8 for the RPDM, in the high-frequency region
function g(w/wy), EQ. (28) with w/wy>1 evaluated by assuming Pelow the Nyquist frequency. Moreover, we have discussed
the stretched-exponential form of the autocorrelation functionthe existence of a scaling law for the power spectrum, inde-
Cn(t)=Cyn(0)exp(|t/my|°9. Here, oy=28.64, 6.75, 3.21,1.75, pendent of the system si2¢ These results may imply that
and 0.71 K10 ?) for N=16%, 32, 48, 64, and 96.

the autocorrelation function for rare fluctuations is expressed
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by a stretched-exponential function. The temporal correla- Finally, we comment on how the spatial dimensionality
tions with stretched exponential decay found in this papeand the boundary conditions influence the form of the PDF
imply that the correlations decay more slowly than conven<or rare fluctuations. First, we cannot necessarily observe
tional fluctuations that obey exponential decay. However, theare fluctuations for all values db in the one-dimensional
stretched-exponential decay is faster than the power-law thi p) case of the LCSCM. The dynamics bf, in the 1D-
is obtained as exp(|t/7“) in the @—0 limit. When the au- | cSCM shows chaotic behavior fd>0.5, but it seems
tocorrelation function decays as a power law, the statisticalhat the transition between weak and fully developed chaotic
analysis based on the large deviation theory for strongly COrgiates occurs at a specific value @f This implies that no
related time series is applied to characterize the intermittent i mediate region is observed in the 1D case. Conse-
time series(3]. It is an interesting problem .hO.W SUCh. flluc- quently, the present chaotic map model indicates large differ-
tuations can be characterized by large deviation statistics. ences in the spatiotemporal dynamics between 1D and 2D
The rare fluctuations observed in this paper wih systems. It is also important to study 3D-LCSCM systems.
=0.67 are also observed for the other parameter valu€s of ; . . d .
: " ; . ! To clarify the difference of its dynamical behavior from 1D
in the transition region 0.65D < 0.7, as discussed in Sec. and 2D svstems is interesting. However. the study on 3D
[ll. From the statistical viewpoint of the critical phenomena, SY 9- ' y
systems is beyond the scope of the present paper. Second, we

the statistical and dynamical properties of the rare fluctuah larified that the BHP fl . btained f
tions in just a critical valueD, is interesting, though the nave clarified that the uctuation spectrum obtained for

valueD = 0.67 treated in the present paper seems to be nedi® RPDM is not observed if we do not require periodic
D.. The important problem is to determine a vaDigin the ~ Poundary conditiong15]. However, the obtained PDF is
infinite system size by using the finite-size scaling. If wegualitatively similar to the BHP but is quantitatively different
obtain the critical valud., it is also interesting to investi- from it. This res_ult clearly _mdlcates that f|n|te-_3|ze effects
gate the several aspects of rare fluctuations BithD . . The affect the statistical propert_@s of gl_obal ﬂuctuat|ons. The ef-
strong spatial correlation of fluctuations and finite-size scal{€Cts of the boundary conditions will be reported in a future
ing will be reported in a future paper. paper.

It is well known that the vortex formation in the 2DXY
system plays a crucial role in its critical dynami&. To
discuss the universal probability densit{2l) and the ACKNOWLEDGMENTS
stretched exponential decay of the time correlation function
(24) in connection with the vortex dynamics is particularly  One of the author§T.W.) thanks Professor P. A. Rikvold
interesting. Studies in this direction in a future are highlyfor the critical reading of the manuscript, useful comments,
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