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Universality of chaotic rare fluctuations in a locally coupled phase map model
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Chaotic fluctuations of the order parameter in a coupled two-dimensional phase map model are numerically
investigated. We discuss the system-sizeN dependence of the statistical properties ofrare fluctuationsobserved
in the transition range between the quasiordered chaotic state and the fully developed one. It is found that the
normalized probability distribution function~PDF! has a unique functional form irrespective ofN. The
asymptotic form of the PDF is discussed in connection with the universal distribution for correlated systems
proposed by Bramwellet al. @Nature ~London! 396, 552 ~1998!#. Moreover, it is observed that the power
spectrumPN(v) of rare fluctuations asymptotically takes the power-law formPN(v);v2(11a) (a50.6
;0.7) irrespective ofN. This result suggests that the temporal correlation decays as a stretched exponential.
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I. INTRODUCTION

Strong correlations of fluctuations over a wide range
times and spaces are typical of nonlinear and nonequilibr
phenomena. In fluid mechanics, for example, the veloc
fluctuations observed in fully developed turbulence sh
strong and self-similar correlations from the energy inject
scaleL to the dissipation scaleh. Universal statistics in the
intermediate scale~the so-called inertial subrange! have been
explored by many researchers@1#. Similar correlated fluctua-
tions are also observed in critical phenomena. Magnetic fl
tuations of spin systems at the critical temperature indic
the long-range magnetic order over scales ranging from
lattice constant to the system size. It is well known that cr
cal exponents characterizing the statistical nature of crit
phenomena are universal in the sense that they are inde
dent of microscopic physical details@2#.

Consider the fluctuations of coarse-grained physical qu
tities over a scalel that satisfies the conditionl min! l
! l max, wherel max ( ł min) is a well-defined effective larges
~smallest! scale in the system. In the aforementioned phy
cal systems, fluctuations on a scalel indicate strong correla
tions, represented by a power-law decay with respect tl.
Fluctuation on this scale are characterized from the vie
point of ‘‘statistical self-similarity’’ of fluctuations, irrespec
tive of the details of the physical systems under consid
ation @3#. In treating a physical quantity defined atl max, e.g.,
the averaged energy dissipation rate in turbulence, we re
it as constant because the dispersion of fluctuations atl max is
much smaller than that atl. However, the self-similar fluc-
tuations reach the scalel max when the correlation length i
larger thanl max. In this case, we cannot neglect the fluctu
tions at l max because they are connected to those at sma
scales through the strong correlations of fluctuations. In
dition, the cutoff of the self-similar nature at scalel max is
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affected by the boundary conditions. Therefore, it seems
the statistical nature atl max depends on the system becaus
quantity coarse-grained at the largest scale, denoted
‘‘global measure’’ in this paper, is affected by the details
the boundary conditions. In a recent study by Bramw
Holdsworth, and Pinton~BHP! @4#, however, it is suggested
that global measure fluctuations defined in both turbule
and critical phenomena indicate universal statistical featu
Their arguments are briefly reviewed as follows.

In experimental von-Karman turbulent flow, on the o
hand, the global measure defined by the power consump
fluctuations of a turbulent flow maintained at constant R
nolds number (Re) shows a unique functional form for th
normalized probability distribution function~PDF!, irrespec-
tive of Re @5,6#. In a finite two-dimensional~2D! harmonic
XY model ~2DHXY!, on the other hand, fluctuations of th
global measure, i.e., the magnetic scalar order parameter
investigated in@7,8#. A unique form of the PDF, irrespectiv
of the number of degrees of freedom~system size! N, was
found by Monte Carlo simulation. Furthermore, BHP@4#
pointed out that both PDF forms of global measures obtai
in turbulence and critical phenomena overlap quite well in
extended range. They discussed this universal nature of
bal fluctuations from the viewpoint of strong correlation
self-similarity, and system size effects. The global measu
defined in these systems are spatially coarse-grained
ables. If the spatial correlation length of the fluctuations
extremely small in comparison with the system size, we c
expect that the PDF’s of global measures should be Gaus
by the central limit theorem. However, the observed P
show the following specific characteristics:~1! the PDF’s are
strongly asymmetrical and non-Gaussian since the str
spatial correlations affect the statistical properties of the g
bal measures, and~2! the normalized PDF’s overlap on
single curve. Furthermore, this universal PDF is observed
global measures defined in several strongly correlated ph
cal systems@9#.

Strong correlations and fluctuations obeying no
Gaussian PDF’s are also observed in the statistics of cha
dynamical systems. Several spatially extended dynam
©2002 The American Physical Society13-1
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systems such as reaction diffusion systems that dis
chemical oscillations or collective motion in interacting lim
cycle oscillators are proposed as models for investiga
nonlinear and nonequibilium dynamics. One of the import
and basic models is a complex time-dependent Ginzb
Landau~CTDGL! equation, which describes the spatiote
poral dynamics near a Hopf bifurcation point@10#. Based on
this model equation, statistical features of several spatiot
poral chaotic states in chemical turbulence have been in
tigated both theoretically and numerically@11#.

In this paper, we focus on the spatiotemporal dynamics
a coupled phase map system that approximately desc
the long-time behavior of the spatially coupled CTDG
equation. Especially, we investigate the statistical proper
of order-parameter fluctuations in the phase map mode
the weak-coupling limit, where the dynamical variables a
the order parameter are corresponding to the orientatio
each spin and the mean scalar magnetic intensity, res
tively.

The main difference between the chaotic phase map
XY spin systems is the origin of the fluctuations; in th
former case, they are caused by chaos intrinsic to the sys
while in the latter, they are caused by thermal noise. Th
the fluctuations in the chaotic phase map originate fr
strong nonlinearity intrinsic to the system. We discuss
parameter dependences of several statistical quantities
scribing the order-parameter fluctuations. Strongly n
Gaussian PDF’s are observed in the specific spatiotemp
chaotic state. Especially, the system-size dependence of
PDF’s are investigated in detail in connection with the u
versal PDF for turbulence and critical phenomena propo
by BHP@4,9#. Moreover, we refer to the statistical properti
of rare dynamical fluctuations by investigating the pow
spectrum when the PDF shows the universal form propo
by BHP.

This paper is organized as follows. Section II introduc
the phase map model. In Sec. III, the global features of
spatiotemporal dynamics are investigated for several va
of the system parameters. In Sec. IV, we discuss the uni
sal nature of the PDF for the order-parameter fluctuation
the specific spatiotemporal chaotic state. In Sec. V, the P
obtained in the phase map model is compared with the a
lytic form proposed by BHP@9# and a stochastic phase ma
model phenomenologically constructed on the basis of
chaotic phase map. In Sec. VI, the temporal correlations
rare fluctuations are studied by observing the asympt
form of the power spectrum and its system-size depende
In Sec. VII, we summarize the results obtained in this pap

II. TWO-DIMENSIONAL COUPLED PHASE MAP
SYSTEMS

It is difficult to investigate the long-time behavior of sp
tially extended or coupled CTDGL equations because of
large number of degrees of freedom. Numerical integratio
also restricted by the current limits of computational pow
A possible approach in this situation is to construct a
namical model to investigate the long-time behavior
coupled CTDGL equations. We can discuss dynamical
02621
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statistical properties of spatio-temporal dynamics based
this model theoretically and numerically. Such a model
this purpose, the coupled Ginzburg-Landau Map~CGLM!,
was proposed by Uchiyama and Fujisaka@12#. The CGLM,
which is composed of effective phase variables, appro
mately describes the long-time behavior of the coup
CTDGL, where the amplitude included in the CTDGL
eliminated in the long-time limit. This model is represent
as

eiu t11
(r )

5ht
(r )uht

(r )u2(11 iC), ht
(r )5(

r8
Jrr 8e

iu t
(r8)

, ~1!

whereu t
(r ) denotes the phase variable describing the stat

the oscillator at the discrete grid pointr5$x,y, . . . ,%
(50,1,2, . . . ,) andtime stept(50,1,2, . . . ,). TheJrr 8 rep-
resents the complex coupling matrix determining the inter
tions among the oscillators. If( r8Jrr 8 is independent ofr ,
Eq. ~1! has the spatially synchronized particular soluti
u t

(r )5u t
s as

u t11
s 5u t

s1j2C lnuwu, ~2!

wherew5( r8Jrr 85uwuei j is independent ofr . We may ap-
ply several complex coupling matrices for modeling partic
lar physical systems. Globally and randomly coupled ca
were investigated in detail in@12#. The parameterC is real
and is a characteristic parameter of this model. Equation~1!
for C50 is equivalent to the Noest model, which is we
known as a model for neural networks@13#. A study applying
this model withCÞ0 to a neural network was carried out
Ref. @14#.

In this paper, we propose a local coupling among the
cillators, so that such oscillator interacts with its near
neighbors. The coupling matrix is given by

Jrr 85H 1 ~ ur2r 8u50!

keib ~ ur2r 8u51!

0 ~otherwise!,

~3!

wherek and b are real. This is the fundamental model f
investigating the long-time dynamics of the collective m
tion of locally interacting oscillators. Here, we use a tw
dimensional ~2D! square lattice, r5(x,y)($x,y%
51,2, . . . ,n) with periodic boundary conditions. This 2D
phase model has a spatially synchronized particular solu
since the coupling matrix~3! in 2D satisfies the equation

w5(
r8

Jrr 85114keib, ~4!

independent ofr . The temporal evolution of the particula
solution is obtained by substituting Eq.~4! into Eq. ~2!.

We define the order-parameterMt to characterize the glo
bal state of the phase map system by

Zt5
1

N (
$x,y%51

N

eiu t
(x,y)

5Xt1 iYt , ~5!
3-2
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Mt5uZtu5AXt
21Yt

2, ~6!

where the summation is taken over allN5n3n spatial
points. The order-parameterMt represents the degree of sy
chronization of the oscillators. It is unity if all oscillators a
spatially synchronized, while it is close to zero when th
fluctuate randomly. This quantity corresponds to the inst
taneous scalar magnetic intensity in an XY spin system.
chaotic state, the global measureMt fluctuates within@0,1#.
The macroscopic behavior of the phase dynamics is cha
terized by the fluctuations ofMt and their statistical proper
ties, andMt is the global measure of the phase map syst

The locally coupled CGLM contains three control para
eters,C, k, andb. Various dynamic aspects are observed
choosing appropriate parameter values@15#. The most impor-
tant parameter isC, which controls the complexity of the
dynamics. In thek-b parameter region where the unstab
uniform oscillation and the inverse-phase state coexist,
system attains several spatiotemporal chaotic states asC is
gradually increased from zero. Spatial structure is obser
for C;1. A developed spatiotemporal chaotic state is est
lished in the largeC(@1) region, where the system behavi
is fully complex both spatially and temporally. Observing t
dynamic features ofMt , we may, on the whole, divide th
states of motion into three groups,~i! coherent states (C
,1), ~ii ! weakly spatio-temporal chaotic states (C;1), and
~iii ! turbulent states (C@1). The system falls onto a particu
lar solution in the coherent state, where fluctuations inMt
are not observed.Mt equals unity because all the oscillato
are perfectly synchronized. Fluctuations inMt are observed
in the second region, where the system shows weak cha
behavior with a spatially coherent structure. In the turbul
state, strongly developed spatiotemporal chaos is obser
andMt fluctuates near zero.

When we consider the weak coupling limit of the coupl
CGLM, i.e., k!1, the equation may be approximated as

u t11
(x,y)5u t

(x,y)1D(
n.n.

sin~u t
(x8,y8)2u t

(x,y)1f!, ~7!

D5kA11C2, f5b2tan21 C, ~8!

to O(k), where(n.n. indicates summation over the neare
neighbors of the site (x,y). Note that the control paramete
in the coupled CGLM are effectively reduced to two para
eters (D,f) in Eq. ~7!. The spatially synchronized solutio
for this model satisfiesu t11

s 5u t
s14D sin(f). This particular

solution is also obtained from Eqs.~2! and ~4! in the k→0
limit. Equation~7! with f50,

u t11
(x,y)5u t

(x,y)1D(
n.n.

sin~u t
(x8,y8)2u t

(x,y)! ~9!

has the specific characteristic that the spatially synchron
solution is temporally constantu t

s5u0.
Next, we consider the linear stability of the synchroniz

oscillation of Eq.~9! by putting d t
(x,y)5u t

(x,y)2u0. The sta-
bility condition for d t

(x,y)5d t
0ei (qxx1qyy) is given by21,1
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24D@sin2(qx/2)1sin2(qy/2)#,1. Therefore, the synchro
nized solution is linearly stable for

0,D,
1

4
. ~10!

The synchronized solution becomes unstable forD.1/4,
where the nonlinearity plays an important role for the d
namics. Numerical simulation shows that a chaotic mot
appears in this region. The parameters included in Eq.~9! are
the coupling-constantD and the number of oscillators~sys-
tem size! N. Depending onD, several states are observed.
the largeD(@1) region, especially, we expect that fully de
veloped spatial and temporal chaotic states are observed
cause the inequalityD@1 means thatC@1 holds in CGLM.
Another important aspect is that Eq.~9! has a conserved
quantity under periodic boundary conditions. In fact, o
may easily prove that the quantity

uc5 (
$x,y%51

N

u t
(x,y) ~11!

is a constant of the motion. Thus, the system Eq.~9! hasN
21 degrees of freedom.

A coupled phase map model such as Eq.~9! has been
investigated for the globally coupled case@16#. To the best of
our knowledge, there have been no previous studies of
locally coupled case. We numerically investigate the coll
tive chaotic motion and statistical properties of theMt fluc-
tuations in Eq.~9!. Hereafter, this model will be called th
locally coupled sine-circle map~LCSCM!.

III. GLOBAL FEATURES OF THE LOCALLY COUPLED
SINE-CIRCLE MAP

In order to obtain the global dynamical features of t
LCSCM, we investigate how the fluctuations inMt depend
on the parameterD for fixed N. Figure 1 shows the bifurca

FIG. 1. Bifurcation diagram of the order-parameterMt in the
LCSCM, shown vsD. The system size is fixed atN5322.
3-3
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tion diagram ofMt with N5322, based on 128 data point
for each value ofD. For each data point, the system w
started atu0

(x,y)50.01pr (x,y), r (x,y) being independent uni
form random numbers about each sites with width@21,1#,
and 65 536 time steps were discarded to allow transient
decay. From the results shown in Fig. 1, the dynamics ofMt

is roughly characterized as follows. In the 0,D,1/4 region,
Mt equals unity because the spatially synchronized stat
stable in this parameter region. The spatially uniform st
becomes unstable forD.1/4. Until D.0.4, Mt falls on the
fixed-point solutions below unity. The dynamics ofMt for
0.4,D,0.55 indicates periodic motion. In this region, how
ever, the relaxation time for the steady state is quite long,
in addition, these periodic solutions sensitively depend
the initial conditions. The state of motion drastically chang
aroundD.0.55, andMt shows chaotic fluctuations forD
.0.55. As D increases further, we notice that the state
motion changes aroundD.0.7 from Mt.0.65 to Mt.0.
This result implies that asD is increased, a transition be
tween a spatially coherent quasiordered chaotic state a
fully developed spatiotemporal chaotic one occurs.

Next, in order to characterize the chaotic behaviors
Mt , we investigate how statistical quantities change as
parameters are changed. The average valueaN5^Mt& and
the standard deviationsN5^(Mt2^Mt&)

2&1/2 are analyzed
for several values ofD andN. Here,^•••& means the long-
time average. Figure 2 shows theD andN dependences of~a!
aN and ~b! ANsN , whereD is varied between 0.5521.05
with increments of 531023 for N5162, 322, 482, and 642.
The average for each run was taken over 327 680 time s
after eliminating the transient 20 000 steps. In the 0.55,D
,0.65 range,aN.0.65, but it decreases rapidly aroun
0.65,D,0.7. This result clearly indicates that there is
transition between a spatially coherent quasiordered cha
state and a fully developed chaotic one in the range 0
,D,0.7. This nature is also qualitatively independent
the system sizeN. Indications of a transition is also observe
for ANsN in the 0.65,D,0.7 region, where the fluctuatio
aroundaN rapidly increases. On the other hand, the ot
region is not almost independent of system sizeN. This
means that the standard deviation decreases assN;N21/2, so
that, as discussed in the next section, the spatial correla
lengths of fluctuations are extremely small in these para
eter values. The position of the sharp peak in the transi
region of ANsN appears to converge to anN-independent
value nearD.0.68 asN increases. The large fluctuations
Mt in this parameter range suggests a specific transi
among spatiotemporal chaotic states. The incipient div
gence ofANsN reminds us of the interrelation between t
present chaotic phase system and the 2DHXY system w
we regard the parameterD andsN as analogous to the tem
perature and susceptibility, respectively.

Moreover, we investigate the behavior of normalized m
ments. The coefficient of variationCVN[sN /aN and the
skewness coefficientSN[^(Mt2^Mt&)

3&/sN
3 for several

values ofN are shown in Figs. 3~a! and 3~b!, respectively.
The numerical conditions for Fig. 3 are the same as for F
2. We can recognize thatCVN andSN sensitively depend on
02621
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D in the transition range represented in Figs. 2~a! and 2~b!.
In this range, however, one should notice that a cross
point of the each lines in Fig. 3~a! is observed nearD
50.68, and it is close to the minimum positions of Fig. 3~b!,
which seems to be independent ofN. These facts may be
possible to determine a transition point for the infinite syst
size in detail. The studies for this purpose will be reported
the future paper.

Another characteristic behavior is observed in the largeD
region (D.0.7), whereCVN andSN are asymptotically con-
stant irrespective ofD and N. This result is explained as
follows. WhenD is sufficiently large,Mt fluctuates near zero
because the motion of the oscillators attains a fully dev
oped chaotic state, and they thus evolve almost rando
This implies thatXt and Yt are regarded as averages
N-independent random variables. The probability distribut
functions~PDF! of Xt andYt are evaluated as normal distr
butions ~Gaussians! for N@1 ~the central limit theorem!.
Moreover, we can expect that̂Xt&.0, ^Yt&.0, and
^XtYt&.^Xt&^Yt&.0 are approximately satisfied forD@1.
This is verified ifu t

(x,y) are represented by independent u
form random numbers with large dispersion. Consequentl

FIG. 2. TheD dependences of~a! the averageaN and ~b! the
standard deviationsN of Mt in the LCSCM. Each line represents
different system size,N5162, 322, 482, and 642.
3-4
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is expected thatXt and Yt obey identical and independen
normal distributions, so that the PDF ofMt

5AXt
21Yt

2, PN(M )5^d(M2Mt)&, is the Rayleigh distri-
bution

PN~M !5
pM

2aN
2

expS 2
pM2

4aN
2 D . ~12!

The corresponding normalized moments,CVR and SR are
obtained as

CVR5S 42p

p D 1/2

.0.52, ~13!

SR5
2~p23!p1/2

~42p!3/2
.0.63. ~14!

Figure 3 clearly shows thatCVN andSN asymptotically ap-
proach toCVR and SR , irrespective ofN. In the 0.55,D
,0.65 region, on the other hand,SN is near zero, which
means that the PDF takes an almost symmetric form. Dra
changes occur for 0.65,D,0.7, where the transition be
tween the coherent or quasiordered and fully developed
otic states occurs. The PDF obtained in this range repres

FIG. 3. TheD dependences of the normalized moments,~a! the
coefficient of variationCVN , and~b! the skewness coefficientSN .
CVR andSR are evaluated by the Rayleigh distribution. For deta
see the text.
02621
tic

a-
nts

an asymmetric non-Gaussian form becauseSN is negative.
One should notice that this result is independent of the s
tem sizeN.

The results obtained in this section are summarized
follows. The spatiotemporal chaotic states are divided i
the following three states for eachD regions:

~1! 0.55,D,0.65: spatially coherent, quasiordered ch
otic state,

~2! D.0.7: fully developed spatiotemporal chaotic sta
~3! 0.65,D,0.7: intermediate or transition state b

tween the states 1 and 2.
In the next section, details of the fluctuation properties

Mt in the transition region 3 will be investigated.

IV. STATISTICAL PROPERTIES OF CHAOTIC RARE
FLUCTUATIONS

In the previous section, we investigated theD andN de-
pendences of statistical quantities such as the averageaN and
the standard deviationsN whenMt fluctuates. In particular, a
transition between the quasiordered and the fully develo
spatiotemporal chaotic states is observed. In this section
investigate the spatiotemporal chaotic state observed in
transition range in detail. Numerical simulation of th
LCSCM for severalD values in this range shows that th
universal features of fluctuations being similar to that of BH
@4,9#, which will be discussed in the next section, are o
served aroundD50.67. Therefore, a characteristic value
D in this range is chosen asD50.67, which is close to theD
value giving the largest standard deviation and the sma
skewness coefficient. We analyze the statistical propertie
fluctuation ofMt for several system sizes withD50.67.

First, Fig. 4 shows~a! the time series ofMt and ~b! the
orbit in theXt-Yt plane forN5322. Here, the initial condi-
tion was chosen as independent random-phase values at
site, which leads toMt.0. We observe thatMt fluctuates
chaotically in the range 0.5;0.6. We also observe characte
istic rare bursts during whichMt decreases significantly be
low this range. In this paper, we call these large duratio
rare fluctuations. This result clearly shows that the spatial
disordered state comes in the coherent chaotic state. S
rare fluctuations are also observed for other values ofD in
the transition range, irrespective ofN. This is one of the most
characteristic aspects of the dynamics in this region. In
Xt-Yt plane, we see that the orbit moves symmetrica
around the origin. This result means that the averaged ph
ū t , defined as

Zt5Mte
i ū t, ~15!

evolves in time. This behavior is similar to the fact that t
total magnetizationMt in the 2DHXY critical spin system
fluctuates with changing the averaged orientation rapidly@7#.

In order to investigate the statistical properties of the r
fluctuations in detail, we analyze several statistical quanti
of Mt . We took 223 data points to calculate the statistic
quantities for system sizesN5162, 322, 482, 642, and

,

3-5
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802, and 224 data points forN5962 and 1282. Hereafter, the
average operation̂•••& denotes the long-time average ov
all data points.

Figure 5 shows the PDF ofMt , PN(M )5^d(M2Mt)&,

FIG. 4. ~a! A short segment of the time series ofMt and~b! the
corresponding orbit inXt-Yt plane for the LCSCM withD50.67
andN5322.

FIG. 5. The probability distribution functionPN(M ) calculated
from the Mt fluctuations withD50.67 for several system size
(N5162, 322, 642, and 1282).
02621
calculated for several system sizes. The PDF has a s
single peak. AsN is increased, both the position and th
width of the peak decrease. Therefore,aN is a decreasing
function with respect toN, as seen in Fig. 2~a!. Figure 6
shows theN dependence of the standard deviationsN of the
PDF obtained in Fig. 5. It is clearly found thatsN decreases
asN is increased. For a largeN, however, it seems that th
rate of decay gradually decreases in comparison with tha
a smallN. It seems that the decaying is not governed by
simple power law. TheN dependence ofsN is interpreted as
follows. By using Eq.~15! we can rewriteMt as

Mt5
1

N (
$r %51

N

c t~r !, c t~r !5cos~u t
(r )2 ū t!. ~16!

The standard deviation is estimated forN@1 by making use
of the correlation function ofc t(r ), CN

c(r )5^c t(r )c t(0)&
2^c t(r )&2, as

sN
2 .

2

N (
$r %50

N

CN
c~r !. ~17!

If the correlation length of the fluctuations ofc t(r ) is much
shorter than the system size (;AN), and theN dependence
of CN

c(0) is negligible in comparison to any power-law fun
tion of N, we obtain sN;N21/2 for sufficiently largeN.
However, Fig. 6 clearly indicates that it decays much slow
than N21/2. This result suggests the existence of spatia
strong correlations ofc t(r ), which are closely connected t
the existence of a spatial coherent structure.

In order to observe the asymptotic behavior of the PD
we plot it in a normalized form by usingM→(M2aN)/sN
andPN(M )→sNPN . The result is shown in Fig. 7. Near th
maximum, the PDF takes a parabolic form, but it depen
almost linearly onM to the left of the maximum. In short, th
PDF shows a strongly asymmetric form, very different fro
a Gaussian. This asymptotic form is related to the fact t

FIG. 6. The dependence on the system sizeN of the standard
deviationsN for D50.67. The dotted line denotessN;N21/2.
3-6
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the skewness coefficientSN shown in Fig. 3~b! takes nega-
tive values. In the range that the deviation from the aver
value aN is within 4sN , the normalized PDF clearly has
unique form independent of system sizeN. This means that a
scaling law,

PN~M !5
1

sN
f S M2aN

sN
D ~18!

is obeyed in a broad range of fluctuation. Here,f (x) is a
scaling function that is independent ofN and satisfies the
normalization conditions

E
2`

`

f ~x!dx5E
2`

`

x2f ~x!dx51, E
2`

`

x f~x!dx50.

~19!

It is important to notice that the scaling law Eq.~18! leads to
relations among moments. If Eq.~18! is satisfied for all
ranges of fluctuations, thepth order moments around th
averageaN should be represented in terms ofsN as

^uMt2aNup&.kpsN
p , ~20!

with prefactorkp . Thus, all moments may be determined
sN , except for the prefactorkp . If sN;N2g in a scale range
of N, we obtain the relation^uMt2aNup&;N2gp. The
present scaling behaviors are described by just one expo
g. The numerical result obtained in our model, howev
does not show the simpleN dependence ofsN such assN
;N2g. The reason that we did not observe the power-l
decay ofsN may be originated from the choosing of th
parameterD50.67, which seems to be slightly smaller th
just a transition pointDc . If we chooseD5Dc , the spatial
correlation of fluctuations is strongest in this point, and m
observe the power-law decay.

FIG. 7. The normalized probability distribution function ofMt

for the LCSCM, shown for several system sizes. The solid cu
line represents the BHP fluctuation spectrum Eq.~21!. The base of
the log is 10.
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Moreover, we refer to theN dependence of the normalize
PDF in the extreme left of Fig. 7. We consider that thisN
dependence is not the statistical error because the right
treme is perfectly in agreement with the scaling law. W
doubt that the statistical property of the extremely rare fl
tuations are sensitively depending on the parameterD below
a transition pointDc and the system sizeN. If we take just a
transition parameter, the unique behaviors of a whole ra
of fluctuations will be observed. This is one of the possib
ties of the observedN dependence, and an unsolved proble
in the present paper.

The statistical nature of the rare fluctuations obtained
this section suggests that a unique, non-Gaussian PDF e
irrespective ofN in a broad range of fluctuations. This prop
erty is quite similar to that of the universal PDF sugges
for turbulence and critical phenomena by BHP@4#. The rela-
tion between our results and that of BHP is discussed in
next section.

V. UNIVERSAL DISTRIBUTION FUNCTION
FOR RARE FLUCTUATIONS

In the previous section, we showed that the fluctuations
Mt are characterized by rare, large bursts that are called
fluctuations. Furthermore, it was shown that the normaliz
PDF obtained from the rare fluctuations is a non-Gauss
unique function that is independent of the system sizeN in a
broad range. It is quite tempting to attempt to obtain t
analytical form of the PDF. The fluctuations ofMt are deter-
ministically produced by the fundamental dynamic
LCSCM system. The numerical results discussed in Sec
suggest that the PDF obtained for the LCSCM is expecte
be similar to the universal PDF proposed by BHP@4#. How-
ever, it is rather difficult to theoretically determine the for
of the PDF for the LCSCM. Instead, we will therefore u
analytical results for the 2DHXY model, for which som
statistical quantities related to the magnetic scalar fluct
tions can be exactly derived@7–9,17#. In particular, a unique
form for the PDF form for the magnetic fluctuations in th
low-temperature region is investigated in detail. The orig
of the non-Gaussian nature of the PDF and its independe
of N are discussed in@8# by evaluating the functional form o
the PDF from relations among moments. Moreover,
asymptotic form of the universal PDF, which we call th
‘‘BHP fluctuation spectrum,’’

f ~x!5K expFp2 $b~x2s!2eb(x2s)%G ~21!

is suggested in@9#, where it is shown that Eq.~21! is in good
agreement with numerical results. The parameters in Eq.~21!
(K52.14, b50.938, ands50.374) are constants evaluate
by Eq. ~19!. In addition, the details of the fitting of Eq.~21!
and other functional forms for the universal PDF by BHP a
discussed in@17#. Furthermore, it is shown in@9# that PDF’s
of global measure fluctuations defined in several correla
systems, such as self-organized criticality or percolation s
tems, are in good agreement with the BHP function~21!.

The chaotic model treated in this paper seems to be
critical state forD50.67 because it is near the transitio
point between the quasiordered and fully developed cha

e

3-7
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WATANABE, TSUBO, AND FUJISAKA PHYSICAL REVIEW E65 026213
states. Moreover, strong spatial correlations appear in
range, evidenced by the fact that the standard deviationsN
decreases more slowly thanN21/2 as shown in Fig. 6. We
therefore conclude that the present LCSCM model posse
strong spatial correlations. Thus, we suspect that our P
may belong to the same universality class as the BHP fl
tuation spectrum. In order to test this possibility, our resu
are compared with the BHP form in Fig. 7. The result rep
sents that the PDF of the LCSCM seems to be in good ag
ment with the BHP form over the wide range of fluctuation
but slightly deviates from it in the tail regions.

Here, we consider the origin of the deviations in the t
regions of PDF. In general, it is uncertain to apply BHP fo
evaluated in theoretical studies of the 2DHXY model to oth
systems. The LCSCM has the same spatial dimension
the same symmetry as the 2DHXY model. Nevertheless,
quite natural that rare fluctuation induced by thermal noise
the 2DHXY model may be different from those induced
chaotic coherent noise produced by the strong nonlinearit
the LCSCM. Moreover, it is reported in@18# that the 2DXY
model for temperatures close to the Kosterlitz-Thouless tr
sition shows a significant deviation from the BHP form,
that the harmonic~spin-wave! approximation is needed t
obtain the BHP fluctuation spectrum in the 2DXY mod
This fact provides a hint as to the origin of the disagreem
of our results with the BHP form. In order to discuss th
problem, we propose a model that amounts to a ‘‘harmo
approximation’’ to the LCSCM, and we compare its orde
parameter fluctuations to those of the LCSCM.

If the phase differences among nearest neighbors are
ficiently small, i.e., a closely synchronized state, we can

proximate the interaction term as sin(u t
(x8,y8)2u t

(x,y)).u t
(x8,y8)

2u t
(x,y) . Moreover, we expect that the fluctuations induc

by chaos plays a role to disturb the phases. This is taken
account in the linearized model by introducing a stocha
noise. Consequently, the phenomenological stochastic p
map model we propose takes the form,

u t11
(x,y)5u t

(x,y)1D(
n.n.

~u t
(x8,y8)2u t

(x,y)!1 f G t
(x,y) . ~22!

The parameterf controls the intensity of the external nois
term, whereG t

(x,y) is a uniform random variable on@21,1#,
statistically independent at each site and time step. Here
note a difference in the physical significance ofD between
the LCSCM and Eq.~22!. The parameterD in the LCSCM
controls the state of chaotic motion forD.1/4, where the
nonlinearity plays an important role for the dynamics. On
other hand, the linearized LCSCM is meaningful only for
,D,1/4 because its solutions forD.1/4 are unstable, a
seen from the stability condition of Eq.~22! with f 50.
Therefore,D should be limited to 0,D,1/4 in Eq.~22!. In
this case,D is regarded as a phase diffusion coefficie
which controls the degree of synchronization among pha
because the continuous limit of Eq.~22! without external
noise is equivalent to the phase diffusion equation. The
fusion term promotes relaxation towards a state of fully s
chronized phases. Therefore, the value ofMt approaches
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unity if the external noise term is neglected in Eq.~22!. This
is the reason for the necessity of the external forcing. He
after, Eq.~22! will be called the random phase diffusion ma
~RPDM!.

We have solved the RPDM numerically and observed
fluctuations of the order-parameterMt . The parameters in
the RPDM areD, f , andN. The parameterf measures the
intensity of the agitation. We study the properties ofMt in
the smallf regime. By performing the numerical simulatio
of the RPDM for several parameter values, we find that th
exists a unique PDF independent ofD and N as long asf
!1 is satisfied. The results forD50.1 and f 50.15 are
shown in Fig. 8 forN5162, 322, 482, 642, and 962, where
the PDF’s are normalized as those in Fig. 7. The charac
istics of the PDF in Fig. 8 are~i! the PDF takes an asymme
ric non-Gaussian form that is similar to that obtained for t
LCSCM, ~ii ! the normalized PDF seems to be independen
the system sizeN in the whole range of fluctuation, and~iii !
the normalized PDF is in good agreement with the BHP fl
tuation spectrum.

One should notice that the RPDM is equivalent to t
Langevin equation for the 2DHXY model if we take th
continuous time limit. Therefore, the PDF ofMt obtained by
the RPDM in this paper is same as that obtained by BHP
@4,9#. This is the reason that the PDF for the RPDM is
good agreement with the BHP form. On the other hand, i
interesting to note that the functional form obtained in t
LCSCM is quite similar to that in the BHP form~21!. This is
because the rare fluctuations in the LCSCM are caused
deterministic chaos. Why are both PDFs so similar?

We anticipate that the main mechanism producing the r
fluctuations is the competition between processes that
chronize and disturb the individual phases. In the RPD
these mechanisms are the ‘‘diffusion term’’ and the ‘‘noi
term,’’ respectively. On the other hand, these mechanisms
not exist independently in the LCSCM. For the intermedia
coupling range in the LCSCM, however, we expect that
coherent chaotic dynamics plays a role in producing b

FIG. 8. The normalized probability distribution function ofMt

in the RPDM for several system sizes. The solid curve repres
the BHP fluctuation spectrum Eq.~21!. The base of the log is 10.
3-8
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UNIVERSALITY OF CHAOTIC RARE FLUCTUATIONS . . . PHYSICAL REVIEW E 65 026213
mechanisms because the dynamics is represented by th
existence of the quasiordered, coherent state and the
developed spatiotemporal chaotic one. It is possible that
fully developed chaotic dynamics play the role of ‘‘nois
term’’ in the RPDM. Conversely, the quasiordered dynam
seem to promote the synchronization among phases. A
result, the intermediate chaotic state contains two mec
nisms implicitly. One should, however, notice that the qua
ordered state is also weakly chaotic, so that the dynamics
also affected by the nonlinearity. Thus, the role of the int
mediate state is different from that of a simple ‘‘diffusio
term,’’ which is linear inu t

(x,y) . Under this consideration, w
conclude that the qualitative features of the rare fluctuati
in the LCSCM are different from those of the RPDM, sin
the deviation from the BHP form for the LCSCM originate
from the spatially quasiordered chaotic state of the syste

VI. POWER SPECTRUM FOR RARE FLUCTUATION
DYNAMICS

As shown in the previous sections, the form of the P
for the LCSCM is quite close to the universal PDF propos
by BHP. However, the universal nature of fluctuations p
posed by BHP@4,9# is based on the resemblance between
PDF’s of global measures in different systems, i.e., st
properties. The dynamical statistics of rare fluctuations h
not been discussed in those studies. It is an important p
lem to elucidate the statistical properties of temporal co
lations of rare fluctuations in correlated physical systems
share the BHP fluctuation spectrum. In this section, we
vestigate theN dependence of temporal correlations.

It is useful to investigate the spectral density of ord
parameter fluctuationsDMt5Mt2^Mt&, defined by

I N~vk!5K U(
t50

T21

DMte
ivktU2L ~23!

for several system sizes. Here,t50,1,2, . . . ,T21 and
vk5v52pk/T(k50,1,2, . . . ,T21). The I N(vk) are nor-
malized so as to satisfyCN(0)5sN

2 5(k50
T21I N(vk)/T, where

CN(t) is the autocorrelation function ofMt , i.e., CN(t)
5^DMtDM0&. Figure 9 shows the numerical results for t
power spectrum ofMt in the LCSCM for T532 768 (N
5162, 322, 482, 642, and 802) and T565536 (N5962

and 1282). One clearly observes thatI N(v) is almost con-
stant in the low-frequency region, but asymptotically take
power-law v2(11a) with a positive a in the moderately
high-frequency region. This power law is characterized by
excess exponenta, which is numerically estimated asa
50.6;0.7. Moreover, observe thata for largeN is indepen-
dent ofN. For the reference, we plotv2(11a) with a50.7 in
Fig. 9. On the other hand, one may notice that a small bu
exists in the right extreme tail ofI N(v). The peak position of
bump for eachN is about half of the Nyquist frequency an
independent ofN. This result may denote the short-time c
herent dynamics of the system originated from the charac
istics of chaotic behavior of the individual oscillator. Th
asymptotic power spectra for largeN are so similar to the
Lorentzian that is obtained by Fourier transformation of
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exponentially decaying autocorrelation function, though
scaling exponent clearly deviates from the case of a Lore
zian tail (a51). For 0,a,1, however, the autocorrelatio
function may be a stretched exponentially decaying funct
@19,20# as

CN~ t !5CN~0!expS 2U t

tN
UaD , ~24!

where tN represents the characteristic correlation time
Mt , which depends on the system sizeN. In order to check
the form of Eq.~24!, we evaluateCN(t) from the numerical
results ofI N(v) in Fig. 9 by the Wiener-Khinchin theorem
The plot is shown in Fig. 10 forCN(t)/CN(0) vs ta with a

FIG. 9. The power spectraI N(v), calculated from the time se
ries of Mt in the LCSCM for several system sizes. The referen
line has a slope of21.7.

FIG. 10. The autocorrelation function of the LCSCM evaluat
by I N(v) in Fig. 9 for several system sizes. One should notice t
the horizontal axis is made byt0.7.
3-9



al

lt

ti-
h
he

ne

ou
In

th
ng
te
s-
Eq
rm

ize

-
su
ot
r

nc

e-

g

M.
be

e

e

ns
lly

er

e

al
nc-
a
his
s of

is
e
he

d-
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50.7 for N5482, 642, 802, 962, and 1282 via a semi-log
plot. The results clearly indicate thatCN(t) is well repre-
sented by the stretched exponential form except the smt
region. This deviation from Eq.~24! in small t region is due
to the bump ofI N(v) in the high-frequency region. AsN
increased,CN(t) decreases more slowly in time. This resu
implies that the characteristic timestN is the increasing func-
tion of N. Thus, the autocorrelation function is asympto
cally given by the stretched exponential function. On t
other hand, this result is also verified as follows. If t
asymptotic form~24! is held in the whole range of time
steps, the power spectrum evaluated by using Wie
Khinchin theorem has the scaling form

I N~v!5I N~0!gS v

vN
D , ~25!

with the characteristic frequencyvN52p/tN , whereg(x) is
a scaling function independent ofN. If T is sufficiently larger
than the discrete time interval, we can take the continu
time limit, and the summation is replaced by an integral.
this case,g(x) is represented by

g~x!5

E
0

`

e2za
cos~2pzx!dz

E
0

`

e2za
dz

. ~26!

In order to investigate the above-mentioned features of
temporal correlations, we check the validity of the scali
law ~25!. For this purpose, we must estimate the charac
istic frequency~time! vN(tN) in a concrete manner. Suppo
ing that the autocorrelation function is represented by
~24! in a broad time range, we may estimate the explicit fo
of tN by substituting CN(t)5CN(0)exp(2ut/tNua) into
I N(v)52*0

`CN(t)cos(vt)dt as

tN5
aI N~0!

2CN~0!G~1/a!
, ~27!

where G(z) is the Gamma function. Consequently,tN is
evaluated by using numerical results forI N(0), CN(0), and
the scaling exponenta, a being estimated from the
asymptotic form of the power spectrum.

Figure 11 shows the scaling plot for several system s
with vN52p/tN evaluated by Eq.~27!, wherea is taken as
a50.7. The scaling law works very well in the whole fre
quency range except the highest-frequency tail. This re
also supports that the autocorrelation function is asympt
cally represented by a stretched exponential function. Mo
over, we can obtain the asymptotic form of the scaling fu
tion g(x) ~26! with x@1 as@20#,

g~x!;A~a!x2(11a), A~a!5
aG~a11!sin~pa/2!

G~1/a!~2p!11a

~x@1!. ~28!
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The asymptotic form~28! with a50.7 are drawn in Fig. 11.
The result is in agreement with the numerical ones forv
>vN , but seems to slightly deviate from the numerical r
sult. This is originated from the overestimation ofvN be-
cause the bump structure ofI N(v) in the highest-frequency
region~or oscillatory structure ofCN(t) in ta!1) affects the
correct values ofvN when we evaluate them by supposin
the pure stretched exponential form ofCN(t).

We have also calculated power spectra for the RPD
The asymptotic form of the power spectra is found to
similar to the case of the LCSCM, viz.I N(v);Const. in the
low-frequency region andI N(v);v2(11a)(a.0.8) in the
high-frequency one. The scaling exponenta for the RPDM
seems to be slightly larger than that for the LCSCM. W
evaluate the autocorrelation functionCN(t) in RPDM by us-
ing the results ofI N(v), as done in LCSCM. The results ar
shown in Fig. 12 via a semi-log plot ofCN(t)/CN(0) vs t0.8.
This result clearly shows that the autocorrelation functio
for eachN are well expressed by the stretched exponentia
decaying function~24! with a50.8 in the whole range of
time.

Moreover, we investigate the scaling law of the pow
spectra as done in the case of LCSCM, but puttinga50.8.
As shown in Fig. 13, the scaling law works very well in th
whole frequency region, i.e.,I N(v)/I N(0)5g(v/vN). The
asymptotic form ofg(x) with x@1 is also drown in Fig. 13
with a50.8, which is in good agreement with the numeric
results. Therefore, we conclude that the autocorrelation fu
tion of Mt in the RPDM is quite well expressed by
stretched exponential function, as in the LCSCM case. T
is an interesting result because the dynamical propertie
the nonequilibrium chaotic system such as the LCSCM
quite similar to that of the equilibrium RPDM model. Th
similarity of static and dynamic properties between t

FIG. 11. Scaling plot ofI N(v) from Fig. 9. The reference line
shows the asymptotic form of the scaling functiong(v/vN) @Eq.
~28!# with v/vN@1 evaluated by assuming the stretche
exponential form of the autocorrelation function,CN(t)
5CN(0)exp(2ut/tNu0.7). Here, vN51.82, 1.39, 1.15, 0.83, and
0.47 (31022) for N5482, 642, 802, 962, and 1282.
3-10
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UNIVERSALITY OF CHAOTIC RARE FLUCTUATIONS . . . PHYSICAL REVIEW E 65 026213
LCSCM and the RPDM suggests the possibility that th
exists a universal dynamical equation for describing
order-parameter fluctuation. If so, such an equation will
of course, established in the coarse-grained levels of fluc
tion, where the origins of fluctuation is clearly different ea
other in the microscopic level. It is an important and int
esting problem to construct the governing equation of mot
for Mt fluctuation.

Finally, we comment on theN dependence of the chara
teristic frequencyvN . We have referred to the fact that th
continuous limit of the RPDM leads to the diffusion equati
without an external noise term,u̇(x,y,t)5Ddi f f¹

2u(x,y,t).

FIG. 12. The autocorrelation function of the RPDM evaluat
by I N(v) for several system sizes. One should notice that the h
zontal axis is made byt0.8.

FIG. 13. Scaling plot ofI N(v), calculated fromMt in the
RPDM. The reference line shows the asymptotic form of the sca
function g(v/vN), Eq. ~28! with v/vN@1 evaluated by assumin
the stretched-exponential form of the autocorrelation functi
CN(t)5CN(0)exp(2ut/tNu0.8). Here, vN528.64, 6.75, 3.21,1.75
and 0.71 (31022) for N5162, 322, 482, 642, and 962.
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By dimensional analysis of the diffusion equation, we c
estimate theN dependences ofvN as follows. The scaling
relation between the characteristic length scaleL and the
time scaleT is represented by the diffusion equation
T21;Ddi f fL

22. In the 2D system, the system sizeN is
evaluated byN;L2, which leads to the evaluationvN
;T21;Ddi f fN

21, if vN is regarded as the inverse of th
characteristic time. Figure 14 shows theN dependence of
characteristic timetN evaluated by Eq.~27! in RPDM. We
can recognize that the prediction by dimensional analysis
phase diffusion equation works very well, i.e.,tN;N.

VII. SUMMARY

In this paper, we have investigated the statistical prop
ties of rare fluctuations of the order-parameterMt in the
LCSCM. Universal statistical properties with respect
variation of the system sizeN were explored by numerica
simulations. As a result, we have found that the steady-s
distribution function in a characteristic spatiotemporal ch
otic state is a non-Gaussian function, and that the functio
form of the normalized distribution function is independe
of the system sizeN. The form of the PDF obtained for th
LCSCM was discussed in connection with the BHP fluctu
tion spectrum and, on the whole, was in good agreem
with it. The results obtained in this paper may suggest t
there exist universal statistical features common to tur
lence, critical phenomena, and dissipative systems.

Furthermore, we have investigated the dynamical prop
ties of rare fluctuations, which have not previously been d
cussed for universal rare fluctuations. It was found that
power spectrum of the order-parameter fluctuations has
power-law formv2(11a) with a50.6;0.7 for the LCSCM
anda50.7;0.8 for the RPDM, in the high-frequency regio
below the Nyquist frequency. Moreover, we have discus
the existence of a scaling law for the power spectrum, in
pendent of the system sizeN. These results may imply tha
the autocorrelation function for rare fluctuations is expres

i-

g

,

FIG. 14. TheN dependence of the characteristic timetN in the
RPDM evaluated by Eq.~27!. The dotted line representstN;N,
which is estimated by the dimensional arguments. For details,
the text.
3-11
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WATANABE, TSUBO, AND FUJISAKA PHYSICAL REVIEW E65 026213
by a stretched-exponential function. The temporal corre
tions with stretched exponential decay found in this pa
imply that the correlations decay more slowly than conv
tional fluctuations that obey exponential decay. However,
stretched-exponential decay is faster than the power-law
is obtained as exp(2ut/tua) in the a→0 limit. When the au-
tocorrelation function decays as a power law, the statist
analysis based on the large deviation theory for strongly c
related time series is applied to characterize the intermit
time series@3#. It is an interesting problem how such fluc
tuations can be characterized by large deviation statistic

The rare fluctuations observed in this paper withD
50.67 are also observed for the other parameter valuesD
in the transition region 0.65,D,0.7, as discussed in Se
III. From the statistical viewpoint of the critical phenomen
the statistical and dynamical properties of the rare fluct
tions in just a critical valueDc is interesting, though the
valueD50.67 treated in the present paper seems to be
Dc . The important problem is to determine a valueDc in the
infinite system size by using the finite-size scaling. If w
obtain the critical valueDc , it is also interesting to investi
gate the several aspects of rare fluctuations withD5Dc . The
strong spatial correlation of fluctuations and finite-size sc
ing will be reported in a future paper.

It is well known that the vortex formation in the 2DXY
system plays a crucial role in its critical dynamics@2#. To
discuss the universal probability density~21! and the
stretched exponential decay of the time correlation funct
~24! in connection with the vortex dynamics is particular
interesting. Studies in this direction in a future are high
desired.
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Finally, we comment on how the spatial dimensional
and the boundary conditions influence the form of the P
for rare fluctuations. First, we cannot necessarily obse
rare fluctuations for all values ofD in the one-dimensiona
~1D! case of the LCSCM. The dynamics ofMt in the 1D-
LCSCM shows chaotic behavior forD.0.5, but it seems
that the transition between weak and fully developed cha
states occurs at a specific value ofD. This implies that no
intermediate region is observed in the 1D case. Con
quently, the present chaotic map model indicates large dif
ences in the spatiotemporal dynamics between 1D and
systems. It is also important to study 3D-LCSCM system
To clarify the difference of its dynamical behavior from 1
and 2D systems is interesting. However, the study on
systems is beyond the scope of the present paper. Secon
have clarified that the BHP fluctuation spectrum obtained
the RPDM is not observed if we do not require period
boundary conditions@15#. However, the obtained PDF i
qualitatively similar to the BHP but is quantitatively differen
from it. This result clearly indicates that finite-size effec
affect the statistical properties of global fluctuations. The
fects of the boundary conditions will be reported in a futu
paper.
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